Penalized nonparametric drift estimation for a multidimensional diffusion process
نویسندگان
چکیده
منابع مشابه
Adaptive Drift Estimation for Nonparametric Diffusion Model
We consider a nonparametric diffusion process whose drift and diffusion coefficients are nonparametric functions of the state variable. The goal is to estimate the unknown drift coefficient. We apply a locally linear smoother with a data-driven bandwidth choice. The procedure is fully adaptive and nearly optimal up to a log log factor. The results about the quality of estimation are nonasymptot...
متن کاملReversible jump MCMC for nonparametric drift estimation for diffusion processes
In the context of nonparametric Bayesian estimation aMarkov chainMonte Carlo algorithm is devised and implemented to sample from the posterior distribution of the drift function of a continuously or discretely observed one-dimensional diffusion. The drift is modeled by a scaled linear combination of basis functions with a Gaussian prior on the coefficients. The scaling parameter is equipped wit...
متن کاملEquivalence for nonparametric drift estimation of a diffusion process and its Euler scheme
The main goal of the asymptotic equivalence theory of Le Cam (1986) is to approximate general statistical models by simple ones. We develop here a global asymptotic equivalence result for nonparametric drift estimation of a discretely observed diffusion process and its Euler scheme. The asymptotic equivalences are established by constructing explicit equivalence mappings. The impact of such asy...
متن کاملNonparametric regression estimation using penalized least squares
We present multivariate penalized least squares regression estimates. We use Vapnik{ Chervonenkis theory and bounds on the covering numbers to analyze convergence of the estimates. We show strong consistency of the truncated versions of the estimates without any conditions on the underlying distribution.
متن کاملA note on penalized minimum distance estimation in nonparametric regression
The authors introduce a penalized minimum distance regression estimator. They show the estimator to balance, among a sequence of nested models of increasing complexity, the L1–approximation error of each model class and a penalty term which reflects the richness of each model and serves as a upper bound for the estimation error. Une note concernant l’estimation par distance minimale pénalisée e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics
سال: 2013
ISSN: 0233-1888,1029-4910
DOI: 10.1080/02331888.2011.591931